Ordering
The set of real numbers is equiped with an order relation, denoted by $<$, such that for any given two red numbers a and b, there are three mutually exclusive posibilities:
(i) $a<b \quad(a$ is less than $b) \quad b>a$
(ii) $a=b \quad$ (a equals b)
(iii) $b<a \quad$ (b is less than a)

We define
(iv) $a \leq b$ (a is less than or equal to b)
(v) $a \geq b$ (a is greater than or equal to b).

Together, the above relations are called inequalities.

For every $x, y, z \in \mathbb{R}$, the following properties hold:

Transitivity:	If $x<y$ and $y<z$, then $x<z$.
Compatibility with addition:	If $x<y$, then $x+z<y+z$.
Multiplication by a positive factor:	If $x<y$ and $0<z$, then $x z<y z$.
Multiplication by a negative factor:	If $x<y$ and $z<0$, then $x z>y z$.

Example: Suppose that $a<b$. There exists a real number x satisfying $a<x<b$.

We will prove that $x=\frac{a+b}{2}$ satisfies $a<x<b$.

$$
\begin{equation*}
a<b \Rightarrow a+b<2 b \Rightarrow \frac{a+b}{2}<b \tag{2}
\end{equation*}
$$

Putting (1) and (2) together we get $a<\frac{a+b}{2}<b$

Example: If $b>0$ and $B>0$ and

$$
\frac{a}{b}<\frac{A}{B} \underset{\substack{\text { malt } \\ \text { both sides } \\ \text { by bB }}}{ } \frac{a}{b} \cdot B b<\frac{A}{B} \cdot b \phi \Rightarrow a B<A b
$$

then $a B<b A$. Deduce that

$$
\begin{aligned}
& \quad \frac{a}{b}<\frac{a+A}{b+B}<\frac{A}{B} \\
& -\frac{a}{b}<\frac{a+A}{b+B}:
\end{aligned}
$$

Adding $a b$ to both sides of $a B<A b$ we get

$$
\begin{aligned}
& a b+a B<A b+a b \Rightarrow a(b+B)<(A+a) b \underset{\substack{b+B>0 \\
b+0 \\
b>0}}{\Rightarrow} \frac{a(b+B)}{b(b+B)}<\frac{(A+a) b}{b(b+B)} \quad \Rightarrow \frac{a}{b}<\frac{A+a}{b+B}
\end{aligned}
$$

Complete it on your own!!

$$
1+2+8^{\prime}
$$

Example: $\underbrace{\text { If } \ddot{a}^{\prime \prime}>0}_{\text {Always true }}$, then $\underbrace{a^{-1}>0}_{\text {Prove this is true. }}$.
Assume that asp and $a^{-1} \leq 0$.
$a^{-1}<0$ or a^{-7}
case I:
case II

Case I
Suppose that $a^{-1}=0$. We know that $a \cdot a^{-1}=1$.
But $a^{-1}=0$ so $a \cdot a^{-1}=0 \Rightarrow 0=1$ contradiction!.
So $a^{-1} \neq 0$.
$\left.\begin{array}{l}\rightarrow \text { state } 1 \\ \text { se } \rightarrow \text { state } 2\end{array}\right\}$ contradiction
coset II:
Now suppose that $a^{-1}<0$. Multiplying both sides by $a>0$, we get $a \cdot a^{-1}<a \cdot 0$ or

$$
1=a \cdot a^{-1}<a \cdot 0=0 \Rightarrow 1<0 .
$$

so $a^{-1}>0$.

Example: If x and y are positive, then $x<y$ if and only if $x^{2}<y^{2}$.

- If $x<y$ then $x^{2}<y^{2} \Rightarrow$
- If $x^{2}<y^{2}$ then $x<y \quad \Leftarrow$
- If $x<y$ then $x^{2}<y^{2}$

Multiply both sides of $x<y$ times x we get $x^{2}<x y$.
Multiply both sides of $x<y$ times y we get $x y<y^{2}$
By transitivity $x^{2}<y^{2}$.

- If $x^{2}<y^{2}$ then $x<y$

$$
x^{2}-y^{2}<0
$$

$(x+y)(x-y)<0$ (I)

$$
\begin{aligned}
& x<y \quad x+y>0 \\
& x-y<0 \\
& (x+y)(x-y)<0 \\
& x^{2}-y^{2}<0 \\
& x^{2}<y^{2}
\end{aligned}
$$

example, $(x+y)^{-1}>0$. Multiplying both sides of (1) by $(x+y)^{-1}$ we get

$$
x-y<0 \underset{c}{\Rightarrow} \Rightarrow x<y .
$$

$$
\begin{gathered}
(x+y)^{1}(x+y)(x-y)<0(x+y)^{-1}=0 \\
x-y<0
\end{gathered}
$$

$$
\begin{aligned}
& a=x+y>0 \\
& a^{-1}=(x+y)^{-1}>0
\end{aligned}
$$

