We define (iv) $a \leq b$ (a is less than or equal to b) (v) $a \geq b$ (a is greater than or equal to b).

Together, the above relations are called inequalities.

For every $x, y, z \in \mathbb{R}$, the following proper	ties hold:
Transitivity:	If $x < y$ and $y < z$, then $x < z$.
Compatibility with addition:	If $x < y$, then $x + z < y + z$.
Multiplication by a positive factor:	If $x < y$ and $0 < z$, then $x z < y z$.
Multiplication by a negative factor:	If $x < y$ and $z < 0$, then $x z > y z$.

Example: Suppose that a < b. There exists a real number x satisfying a<x<b. a a + b bWe will prove that $x = \frac{a+b}{2}$ satisfies acxcb. $a < b \Rightarrow 2a < a + b \Rightarrow a < a + b$ (1) add a to both divide by 2 Sides a<b⇒ atb<2b⇒ <u>atb</u><b (2)

Putting (1) and (2) together we get a catter

Example: If b>0 and B>0 and	
a <a b B both sides b Bb<a.bb =<br="">by bB</a.bb></a 	⇒ aB <ab< td=""></ab<>
then aB <ba. deduce="" td="" that<=""><td></td></ba.>	
acatACA.	2
b $b+B$ B	a (0+8) 2 (a+A)b
$\bullet a < a + A :$	ab+aB <abiab aB<ab< td=""></ab<></abiab
b 6+B	<u> </u>
Adding ab to both sides of aB< abtaB <abtab⇒ a(btb)<(ata)b<="" th=""><th>.Ab we get</th></abtab⇒>	.Ab we get
b	+B>0 b>0
$a(btb) < (A + a)b \Rightarrow a c$	Ata
b(b+B) b(b+B) b	6+B
Complete it on your own!!	
1×40 (1×42)	

Example: If a > 0, then a - 1 > 0. Always true Prove this is true. Assume that abo and a 40. aseI caseI case I: Suppose that a'= 0. We know that a.a'=1. But a'=0 so $a \cdot a'=0 \Rightarrow 0=1$ contradiction. (ASET: Now suppose that a '<0. Multiplying both sides by a>o, we get a.a. <a. o or $1 = a \cdot a' \langle a \cdot 0 = 0 \Rightarrow | \langle 0 \rangle.$ 80 a'>0.

Example: If x and y are positive, then x<y if and only if x²<y². If x<y then x²<y² ⇒ · If x2xy2 then xxy E

· If x<y then x²<y² Multiply both sides of x<y times x we get x²<xy. Multiply both sides of x<y times y we get xy zyz By transitivity x2<y2.

X Ly X+y>0 · If x2xy2 then xxy x-y <0 x - y2 < 0 (xty)(x-y)<0 x2-y2<0 (x+y)(x-y)<0 (1) x2 < y2 since xty 20, by the previous

0 ' (example, (xty)">0. Multiplying both sides of (1) by (x+y)" we get X-y<0 ⇒ X<y. add y to both sides

(x+y) (x+y) < 0 (x+y) = 0 x-y20

a= X+y >0 a-1 = (x+y) >0